【www.arisingsemi.com--软件制图】

参杂
COOLMOS(super junction)原理、结构、制造方法。
马万里 发表于: 2010-7-03
09:42 来源: 半导体技术天地
COOLMOS(super junction)原理、结构、制造方法。看到不少网友对COOLMOS感兴趣,把自己收集整理的资料、个人理解发出来,与大家共享。个人理解不一定完全正确,仅供参考。COOLMOS(super junction)原理,与普通VDMOS的差异如下:对于常规VDMOS器件结构,大家都知道Rdson与BV这一对矛盾关系,要想提高BV,都是从减小EPI参杂浓度着手,但是外延层又是正向电流流通的通道,EPI参杂浓度减小了,电阻必然变大,Rdson就大了。所以对于普通VDMOS,两者矛盾不可调和。
但是对于COOLMOS,这个矛盾就不那么明显了。通过设置一个深入EPI的的P区,大大提高了BV,同时对Rdson上不产生影响。为什么有了这个深入衬底的P区,就能大大提高耐压呢。大家知道,对于常规VDMOS,反向耐压,主要靠的是N型EPI与body区界面的PN结,对于一个PN结,耐压时主要靠的是耗尽区承受,耗尽区内的电场大小、耗尽区扩展的宽度的面积,也就是下图中的浅绿色部分,就是承受电压的大小。常规VDSMO,P body浓度要大于N EPI,大家也应该清楚,PN结耗尽区主要向低参杂一侧扩散,所以此结构下,P body区域一侧,耗尽区扩展很小,基本对承压没有多大贡献,承压主要是P body--N EPI在N型的一侧区域,这个区域的电场强度是逐渐变化的,越是靠近PN结面(a图的A结),电场强度E越大。所以形成的浅绿色面积有呈现梯形。
但是对于COOLMOS结构,由于设置了相对P body浓度低一些的P region区域,所以P区一侧的耗尽区会大大扩展,并且这个区域深入EPI中,造成了PN结(b图的A结)两侧都能承受大的电压,换句话说,就是把峰值电场Ec由靠近器件表面,向器件内部深入的区域移动了。形成的耐压(图中浅绿色的面积)就大了。当COOLMOS正向导通时,正向电流流通的路径,并没有因为设置了P region而受到影响。

Rdson,BV的优势说明:

英飞凌采用的多次注入法,形成的结构,之所以采用多次注入,个人理解是,由于P区需要深入到EPI中,且要均匀分布,一次注入,即使能注入到这么深,那么在这个深度中的分布也不会均匀。
当然,也有其他办法,也能保证在EPI中注入这么深,并且保证不同位置的浓度差异不大,那就是再下面提到的STM技术(Super trench MOSFET)

采用倾斜角度注入,实现Super junction的结构。(STM)

STM结构的3D示意图:

本文来源:http://www.arisingsemi.com/it/56557/