【www.arisingsemi.com--软件系统】

基于是什么意思
有关基于模型的设计(MBD)一些概念和理解
先胡乱问几个大问题:
1. 什么叫基于模型的设计。
2. 为什么要基于模型的设计。
3. 基于模型的设计过程中,需要做什么事情。
再问几个小问题:
1. 模型验证是否必要。
2. 模型验证有哪些工作可以做。
3. 模型验证是否一定需要被控对象模型。

4. 代码生成效率如何。
5. 底层驱动是否要建模。
6. Embedded Coder(以前的RTW Embedded Coder)支持哪些芯片。
7. MIL、SIL、PIL、HIL的目的和实现方式。

8. 如何定点化。
9. 如何做代码集成。

什么叫基于模型的设计。
这是一个很大的话题,因为本人能力所限,仅讨论使用Simulink模型开发嵌入式软件的设计过程。
也就是说,我只能聊基于模型的嵌入式软件设计。
    我的理解是,通过对算法建模进行软件设计的过程,都可以叫基于模型的设计。
当然,如果仅限于算法建模,把Simulink/Stateflow当做Visio使用,而不去进行其他环节的工作,这样的基于模型设计是不完整的,可能对你的开发效率不会有很大的提升。    如果想通过基于模型的设计提升软件开发团队的开发效率,提高软件品质,我觉得至少有如下几点可以考虑:
1. 算法建模
2. 算法模型的验证
3. 文档自动化
4. 代码生成
5.  代码和模型的等效性验证
传统的开发过程中,我们有一个环节,需求捕获,也即,从系统需求分解出软件需求。
在基于模型的设计过程中,我们同样可以通过分析系统需求,获得软件需求。当然,根据系统需求的详细程度,我们可以考虑是否要写专门的软件需求。
在基于模型的软件设计中,我们主要关心的是系统的功能需求,或者说可以通过软件实现的功能需求。如果这部分需求在系统需求文档里已经有非常清楚的定义,那么我们可以以系统需求文档作为依据建立模型。
当然,如果系统需求不是足够清楚,那我们有必要编写专门的软件需求文档。如果不考虑Simulink/Stateflow的应用上的问题,也就是说,如果我们都是熟练的Simulink/Stateflow用户,那么建模过程的主要工作是需求分析,通俗点讲,需求弄清楚了,建模也就是非常简单的事情了。
当然,建模的时候,要考虑未来的验证、实现以及后期维护的问题。
我个人的体会,这个阶段,不要着急建模,一定要先弄清需求,另外,建模的时候,模型架构非常重要。

有了模型之后,接下来要做什么事情。
代码生成。

这是很多比较初级的用户容易犯的错误,犯这个错误的用户,很大程度上是因为没有弄清楚为什么要做基于模型的设计。
为什么要做基于模型的设计。
我相信很多用户没有仔细考虑这个问题,很多用户做基于模型的设计的理由是:国外的公司都这么做,同行其他公司都这么做......弄清为什么要基于模型的设计,也就是要弄清楚基于模型的设计到底可以给我们带来哪些好处。
很多人会非常自然的想到,代码生成,代码生成可以提高软件开发效率。
没错,代码生成是一个很大的好处,但,代码生成不是唯一的,也不是最大的好处。
最大的好处是,算法的早期验证,之前NASA有研究表明,开发初期引入的bug,如果到了晚期才发现出来,那么修复这一的bug,会产生非常大的费用。
所以,我们期望能够尽早的发现开发过程中引入的bug。
如何尽早的发现设计上的错误。传统的开发模式里,我们使用review的方式去发现错误,在质量体系ISO9001里面有定义,任何一份设计,都必须要评审。评审的目的,也就是为了发现这个阶段的错误,以防错误被带到后续的开发过程中。

而评审的效率,却是非常低下的。我想凡是参加评审的网友都会有体会。比如,我在做完一份设计之后,我会邀请我的同事来评审我的工作,而参加评审的这些同事,往往不能有足够的时间了解我的这份工作,而只能在评审会上听我介绍我做的工作,这样的评审,可能会发现一些非常明显的问题,除此之外的,很难发现问题。
评审作为一种非常传统的验证方式,并不能及时发现设计过程中引入的各种错误。
而仿真,从效率上讲,要远高于评审,仿真更容易发现设计中的问题。仿真是可以运行的,如果我们设定一些输入,运行模型之后,我们会得到相应的输出,我们很容易观测到此时的输出是否是我们期望的输出。另外还有好处,仿真的结果是确定的,给定输入,就会得到确定的输出,当然,期望输出也是确定的。而不像评审,同样的文字,对于不同人,可能理解成不同的含义。
代码生成和早期验证之外,基于模型的设计,还可以给我们带来其他好处,比如文档自动化。我们经常听到这样的说法:
l 我们终于把软件发布出去了,现在可以有时间补文档了...
l 下个月要audit了,所有同事都在补文档....
这里我要问:为什么要补文档。补文档,我们可以从中得到两个方面的信息:1.文档很重要,不能没有,至少从质量体系上要求我们必须有文档2.工程师都不愿意写文档,是啊,如果愿意写文档的话,在开发过程中自然会把各类文档写起来的。
好,工程师不愿意写,开发过程中又不能少,如果计算机可以帮我们写,岂不是很美好的事情。基于模型的设计,可以帮助我们实现文档自动化,至少有相当大的一部分文档可以让计算机替我们写。
其实,基于模型的设计,还有一个天然的优势:图形化设计。

对于工程师来讲,图形化的东西,本身就比文字更容易理解,否则我们在软件开发过程中也不会去画流程图和状态机了
所以总结一下,基于模型的设计可以从以下方面给我们提供便利:1. 图形化设计2. 早期验证3. 代码生成4. 文档自动化
前面我大概论述了为什么要做基于模型的设计,或者说基于模型的设计可以给我们带来哪些好处。这些好处,最终会大大提高开发效率,并且改善软件品质。下面,我在说说基于模型的设计里有哪些事情要做,刘博士说的没错,基于模型的设计,自然模型最重要,如何建模,毫无疑问是最为重要的环节。
在软件产品开发中,建模活动里,耗时最多的,就应该是需求分析了,需求分析不仅包括如何正确理解软件需求,而且要考虑如何通过模型实现,真正的画模型的时间,相比之下并不多,如果Simulink/Stateflow用的熟的话,真正打开MATLAB画模型的时间占建模阶段总时间的1/3都不到。
建模之后,接下来就是模型验证,验证,英文单词Verification,英文里面还有另外一个词Validation,确认,很多人不清楚这两个词之间的区别,通俗点讲:Verification是考察你是否正确的做了一件事,而Validation,则是考察你是否做出了正确的东西。一个强调的是过程,一个在乎的是结果。
闲话少说,咱们继续回到模型验证上来,通常模型验证包含如下活动:建模标准的检查、评审、单元测试、快速原型。(如果说的不完善,欢迎大家补充)
建模标准的检查,可以通过模型检查工具自动完成,建模标准检查的意义,和传统开发模式里C编码标准的意义一致,这里不展开了。

模型验证之后,接下来就可以做代码生成了,有关代码生成,也专门讨论吧。
1. 代码生成之后,需要做代码验证,基于模型的开发过程里面,SIL、PIL都是常用的代码验证方式。

2. 在代码做完SIL或者PIL测试之后,要考虑软件集成了,即应用层软件,也就是通过Simulink模型生成的软件,和底层驱动软件之间的集成。
3. 软件集成之后,后面的事情,基本上和传统的开发模式差不多了,当然,相对于传统的开发模式,你可以多一个HIL环节出来,不过话又说回来,即便是传统的开发模式,也一样可以有HIL这个环节的。
有关HIL的实现及目的,以后再说。再说说模型验证的必要性。
我在进入MathWorks之后,接触过很多客户,不少客户在最初引入基于模型设计的时候,根本不在意模型验证工作,他们经常在模型编译通过之后就拿去生成代码,有了代码之后将代码下载到各种快速原型设备上去测试算法,Simulink的仿真功能基本上成了摆设。并且在这个阶段,不管我如何苦口婆心的给他们介绍模型验证的重要性,在他们那边,却总有各种各样的借口去省略模型验证环节,“项目时间太紧,模型来不及测”,“我们知道规范的开发流程,但是现在人手不够”。
当然,这类用户经常在这样折腾了一段时间之后,还是要回到模型测试上来,他们最终会发现,在HIL设备上测试算法,实在太难,当然,也有坚持的,坚持的结果就是他们所谓的基于模型的设计,开发效率比传统的开发模式高不了多少。
其实,这个问题我们可以这么去看,模型阶段的测试,我们是可以分模块进行的,而HIL上测试,基本上是集成之后的软件。比如,一个软件有10个模块,在HIL设备上,你很难分离出每个模块的bug,而如果是按模块做单元测试,则就是针对的一个具体的模块。打一个不算恰当的比方,我们都知道一块2克拉的钻石,价格肯定不是一块1克拉钻石的两倍。
类似的,如果每个软件模块有2个bug,那么你从集成好的软件里去消除这20个bug,耗费的精力肯定不是从每个单元模块里去消除bug所耗精力的总和。说白了,早期验证是非常重要的,很多软件工程的教材里都有相关的统计数据说明早期验证的重要性,对应到基于模型的开发过程,能在模型级别做的验证,一定不要拖到后续的环节中。
中国有句老话,“心急吃不了热豆腐”,“项目时间紧”或者“人手不够”不能成为我们忽略模型测试的借口。继续说一下MBD开发过程中都有哪些验证工作要做。

模型出来并且可以编译之后,首先要做建模标准检查,这个过程使用工具(比如MathWorks公司的Simulink Verification & Validation提供的model advisor)自动化的完成,检查过后,修改模型中不符合公司建模规则的项目。
接下来,就可以进行模型评审了,也就是说,评审的模型有两个前提,一是可以编译的,二是符合公司建模规则的。这两个前提可以帮助我们消除模型中的一些低级错误,避免在评审过程中有太多的时间花费在这些错误上。因为评审是建模的工程师和其他同事共同参与的活动,做到上述两个前提,也是对其他同事工作时间的一种尊重。
评审之后,建模的工程师会修改评审中发现的问题,问题多的话,一般会要求修改之后再进行“再评审”,直到在评审中不会发现大量问题。

接下来,我们可以使用Simulink Design Verifier进行模型的结构分析,借助于Simulink Design Verifier自动生成测试用例的功能,去检查结构上是否存在问题,比如是否有不合理的逻辑设计,是否有运行不到的分支等。
再往后,就可以进行模型单元级别的功能测试了。软件开发过程中,对单元测试的要求是很高的,一般会根据应用的安全性、可靠性要求,给出测试的覆盖率要求。
这个过程中工作量最大的应该是测试用例设计以及测试向量的生成。
测试用例设计,我们一般会根据需求去设计测试用例,当然,也会结合模型结构设计测试用例,这样说来,这里的测试,已经包含了黑盒测试和白盒测试。有了测试用例,如何把测试用例转换为测试向量,这也是非常重要的环节。我们知道,在MBD开发过程中,代码都可以自动生成,其他环节,我们要努力做到自动化实现。我们可以使用MATLAB脚本开发一些转换工具用于将测试用例转换为测试向量,我们还可以通过脚本实现测试过程的自动化。。

本文来源:http://www.arisingsemi.com/it/106679/